Inteligencia artificial explicable (XAI) en aprendizaje automático
Fecha
2021-09-10
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
El campo del aprendizaje automático ha sufrido un auge extraordinario estos últimos años. Sin embargo, la
opacidad en los modelos de aprendizaje automático no permite comprender los resultados, lo que limita la
expansión de este en diversos sectores. La inteligencia artificial explicable (XAI) tiene como meta obtener
métodos para poder explicar los resultados de los modelos de aprendizaje automático, posibilitando su expansión
en sectores en los que es necesario comprender el proceso de obtención de los resultados para poder
contrastarlos, como medicina, finanzas o vehículos autónomos. Este trabajo tiene como objetivo adentrar al
lector en el campo de XAI, mostrando una introducción teórica y mostrando aplicaciones prácticas en diversos
modelos de aprendizaje automático.
Deep Learning has experienced an extraordinary increase in recent years. However, the opacity of machine learning models does not allow understanding the results, which limits the expansion of machine learning in some fields. Explainable artificial intelligence (XAI) aims to obtain methods to explain the results of machine learning models, enabling its expansion in fields where it is necessary to understand the process of obtaining results to be able to contrast them, such as medicine, finance or autonomous vehicles. This project aims to introduce the reader to the field of XAI, providing a theoretical introduction and showing practical applications in several machine learning models.
Deep Learning has experienced an extraordinary increase in recent years. However, the opacity of machine learning models does not allow understanding the results, which limits the expansion of machine learning in some fields. Explainable artificial intelligence (XAI) aims to obtain methods to explain the results of machine learning models, enabling its expansion in fields where it is necessary to understand the process of obtaining results to be able to contrast them, such as medicine, finance or autonomous vehicles. This project aims to introduce the reader to the field of XAI, providing a theoretical introduction and showing practical applications in several machine learning models.