Análisis estadístico de procesos aleatorios cuaternión
Archivos
NO SE HA AUTORIZADO la consulta de los documentos asociados
Fecha
2024-05-15
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
Los cuaterniones son un álgebra extensión del cuerpo complejo formada por una parte real y tres unidades
imaginarias, que han sido ampliamente utilizados en un gran número de investigaciones en ámbitos tan
dispares como la física, la medicina o las redes neuronales. El objetivo de este trabajo es analizar
estadísticamente los procesos aleatorios en el ámbito cuaternión, en base a sus características de segundo
orden. De especial interés, serán aquellos procesos que presentan un cierto tipo de propiedad, relacionada
con la cancelación de las covarianzas complementarias, y que implican ciertas ventajas computacionales. En
el presente trabajo se estudia el álgebra compleja e hipercompleja de forma general y se revisan resultados
de los procesos aleatorios complejos para motivar e interpretar el estudio de los procesos aleatorios
cuaternión.
Quaternions are an extension algebra of the complex field formed by a real part and three imaginary units, which have been widely used in a large number of investigations in fields as diverse as physics, medicine or neural networks. The aim of this work is to statistically analyze random processes in the quaternion domain, based on their second order characteristics. Particularly important will be those processes that present a certain type of property, related to the cancellation of complementary covariances, and that imply certain computational advantages. In this paper, complex and hypercomplex algebra is studied in a general way and results of complex random processes are reviewed to motivate and interpret the study of quaternion random processes.
Quaternions are an extension algebra of the complex field formed by a real part and three imaginary units, which have been widely used in a large number of investigations in fields as diverse as physics, medicine or neural networks. The aim of this work is to statistically analyze random processes in the quaternion domain, based on their second order characteristics. Particularly important will be those processes that present a certain type of property, related to the cancellation of complementary covariances, and that imply certain computational advantages. In this paper, complex and hypercomplex algebra is studied in a general way and results of complex random processes are reviewed to motivate and interpret the study of quaternion random processes.
Descripción
Palabras clave
Matemáticas