Teoría de Sturm-Liouville. Polinomios ortogonales clásicos
Archivos
NO SE HA AUTORIZADO la consulta de los documentos asociados
Fecha
2024-05-15
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
En el trabajo se estudia la teoría de Sturm-Liouville y los polinomios ortogonales clásicos, que aparecen
como soluciones específicas para ciertas condiciones de contorno. En primer lugar, se han estudiado los
ceros de las soluciones y sus propiedades de ortogonalidad. Se han definido las condiciones necesarias
para el operador diferencial autoadjunto y, centrándose en el problema regular de Sturm-Liouville, se ha
estudiado la existencia de autovalores y sus autofunciones, que forman un conjunto completo en L2 . Para
finalizar, se ha introducido el problema de Sturm-Liouville singular. En segundo lugar, se han estudiado
características generales de los polinomios ortogonales y posteriormente se han concretado para los
polinomios de Jacobi y sus especificaciones, los polinomios de Legendre, Chebyshev de primera y segunda
especie y Gegenbauer. Tras esto se ha analizado cómo cambia la distribución de ceros según la función
peso utilizada.
The paper studies Sturm-Liouville's theory and classical orthogonal polynomials, which appear as specific solutions for certain boundary conditions. First, the zeros of the solutions and their orthogonality properties have been studied. The necessary conditions for self-adjoint differential operators have been defined and, focusing on the regular Sturm-Liouville problem, the existence of eigenvalues and their eigenfunctions, which form a complete set in L2, have been studied. Finally, the singular Sturm-Liouville problem has been introduced. Next, general characteristics of orthogonal polynomials have been studied and subsequently specified for Jacobi polynomials and their specifications, Legendre polynomials, Chebyshev first and second species and Gegenbauer. After this, it has been analyzed how the distribution of zeros changes according to the weight function used.
The paper studies Sturm-Liouville's theory and classical orthogonal polynomials, which appear as specific solutions for certain boundary conditions. First, the zeros of the solutions and their orthogonality properties have been studied. The necessary conditions for self-adjoint differential operators have been defined and, focusing on the regular Sturm-Liouville problem, the existence of eigenvalues and their eigenfunctions, which form a complete set in L2, have been studied. Finally, the singular Sturm-Liouville problem has been introduced. Next, general characteristics of orthogonal polynomials have been studied and subsequently specified for Jacobi polynomials and their specifications, Legendre polynomials, Chebyshev first and second species and Gegenbauer. After this, it has been analyzed how the distribution of zeros changes according to the weight function used.
Descripción
Palabras clave
Matemáticas