Identificación de defecto en aceitunas mediante procesamiento de imágenes
Fecha
2019-09-03
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
La calidad del aceite de oliva depende de muchos factores, uno de ellos es el estado
de la materia prima, si el fruto es defectuoso el aceite pierde calidad; por el tamaño y
cantidad de la materia prima, clasificar los frutos de forma manual es casi imposible.
En este informe se recoge el estudio del desarrollo de una herramienta capaz de
clasificar estos frutos defectuosos mediante el procesamiento de imágenes. Este
proceso se realiza con la ayuda de un set up experimental, para adquirir las
imágenes que contienen frutos con diferentes defectos; y el entorno de
programación MATLAB, para el desarrollo de los algoritmos que identificaran los
defectos en los frutos. También se han desarrollado diferentes interfaces gráficas,
cuya función es la obtención de características de los defectos necesaria para el
entrenamiento de redes neuronales, con el objetivo de clasificar los defectos
The quality of the olive oil depends on many factors. One of them is the state of the raw material, if the fruit is defective the olive oil loses its quality; to classify the fruit the manual way according to the size and the quantity of the raw material is almost impossible. This report compiles the study of the development of a tool which is able to sort out these defective fruits through image processing. This process is possible with the help of a experimental set up, to get the images to containing different defective fruits and the programming environment Matlab to develop algorithms that will identify the defects on the fruits. Besides, different graphic interfaces have been developed to identify the characteristics of the defects which are necessary for the training of neural network, with the goal of classifying the defects of the olives.
The quality of the olive oil depends on many factors. One of them is the state of the raw material, if the fruit is defective the olive oil loses its quality; to classify the fruit the manual way according to the size and the quantity of the raw material is almost impossible. This report compiles the study of the development of a tool which is able to sort out these defective fruits through image processing. This process is possible with the help of a experimental set up, to get the images to containing different defective fruits and the programming environment Matlab to develop algorithms that will identify the defects on the fruits. Besides, different graphic interfaces have been developed to identify the characteristics of the defects which are necessary for the training of neural network, with the goal of classifying the defects of the olives.
Descripción
Palabras clave
Electrónica Industrial/Mención en Automática