Detección de daños en aceitunas de mesa mediante técnicas no invasivas
Fecha
2024-07-09
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
Este trabajo se centra en la implementación de la visión hiperespectral como herramienta avanzada para
la detección de daños en aceitunas de mesa, destacando su superioridad sobre las cámaras tradicionales.
La tecnología hiperespectral captura información a lo largo de un amplio rango de longitudes de onda,
incluyendo el espectro visible e invisible al ojo humano, permitiendo identificar características intrínsecas
no detectables con cámaras convencionales. Esto es especialmente relevante en aceitunas, donde los
daños internos o sutiles alteraciones en la superficie pueden no ser visibles a simple vista. Se diseñó un
setup experimental con una cámara hiperespectral para analizar muestras en forma de hipercubos,
buscando patrones espectrales asociados a diferentes tipos de daños. Usando técnicas avanzadas de
procesamiento de imágenes y análisis de datos con MATLAB, se identificaron indicadores espectrales clave
y se desarrolló un modelo para evaluar los daños de manera efectiva.
This project focuses on the implementation of hyperspectral imaging as an advanced tool for detecting damage in table olives, highlighting its superiority over traditional cameras. Hyperspectral technology captures information across a wide range of wavelengths, including the visible and invisible spectrum to the human eye, allowing the identification of intrinsic characteristics that conventional cameras cannot detect. This is particularly relevant for olives, where internal damage or subtle surface alterations may not be visible to the naked eye. An experimental setup was designed using a hyperspectral camera to analyze samples in the form of hypercubes, searching for spectral patterns associated with different types of damage. Using advanced image processing techniques and data analysis with MATLAB, key spectral indicators were identified, and a model was developed to effectively assess the damage.
This project focuses on the implementation of hyperspectral imaging as an advanced tool for detecting damage in table olives, highlighting its superiority over traditional cameras. Hyperspectral technology captures information across a wide range of wavelengths, including the visible and invisible spectrum to the human eye, allowing the identification of intrinsic characteristics that conventional cameras cannot detect. This is particularly relevant for olives, where internal damage or subtle surface alterations may not be visible to the naked eye. An experimental setup was designed using a hyperspectral camera to analyze samples in the form of hypercubes, searching for spectral patterns associated with different types of damage. Using advanced image processing techniques and data analysis with MATLAB, key spectral indicators were identified, and a model was developed to effectively assess the damage.
Descripción
Palabras clave
General