DESARROLLO DE UN MODELO DE PREDICCIÓN DE LA ESTABILIDAD OXIDATIVA DEL ACEITE DE OLIVA VIRGEN DE LA VARIEDAD “PICUAL”
Fecha
2022-03-15
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
[ES] El aceite de oliva virgen extra de la variedad ‘Picual’ se caracteriza por su elevada vida útil. Para llevar a cabo una predicción de ésta se lleva a cabo la determinación de la estabilidad oxidativa mediante el equipo Rancimat, lo que en el caso de los aceites de la variedad ‘Picual’, por su elevada estabilidad, es tedioso y en ocasiones da lugar a errores en la determinación.
En este trabajo se han aplicado diferentes metodologías de análisis multivariante (PCA, MLR y PLS) para la obtención de un modelo de predicción de la estabilidad oxidativa de los aceites de la variedad ‘Picual’ a partir de su composición. Para ello se han empleado un total de 188 muestras de aceite a los que se le has determinado la composición en ácidos grasos, y el contenido en los principales compuestos minoritarios: polifenoles, tocoferoles, pigmentos carotenoides y clorofílicos.
Se ha observado que, de entre los compuestos analizados, los Polifenoles por su elevada actividad antioxidante, son los componentes que inciden de forma más importante en la estabilidad oxidativa de los aceites de la variedad ‘Picual’. De entre los métodos de análisis multivariante evaluados, es el PLS el que permite obtener un modelo de predicción de la estabilidad oxidativa más robusto y con menor número de variables. Disponer de un modelo de predicción a partir de la composición del aceite permitiría predecir la estabilidad oxidativa de forma inmediata.
[EN] The extra virgin olive oil of the 'Picual' variety is characterised by its high shelf life. To carry out a prediction of this is carried out the determination of the oxidative stability through the equipment Rancimat, which in the case of the oil of the variety 'Picual', for its high stability, is tedious and sometimes gives rise to errors in the determination. In this work, different multivariate analysis methodologies (PCA, MLR and PLS) have been applied to obtain a model of prediction of the oxidative stability of oils of the Picual variety from its. A total of 188 oil samples have been used to determine the composition in fatty acids, and the content in the main minority compounds: polyphenols, tocopherols, carotenoid pigments and chlorophylls. It has been observed that, among the compounds analyzed, Polyphenols due to their high antioxidant activity are the components that have the most important influence on the oxidative stability of oils of the variety 'Picual'. Among the multivariate analysis methods evaluated, it is the PLS that allows to obtain a more robust oxidative stability prediction model with fewer variables. Having a prediction model from the composition of the oil would allow to predict oxidative stability immediately.
[EN] The extra virgin olive oil of the 'Picual' variety is characterised by its high shelf life. To carry out a prediction of this is carried out the determination of the oxidative stability through the equipment Rancimat, which in the case of the oil of the variety 'Picual', for its high stability, is tedious and sometimes gives rise to errors in the determination. In this work, different multivariate analysis methodologies (PCA, MLR and PLS) have been applied to obtain a model of prediction of the oxidative stability of oils of the Picual variety from its. A total of 188 oil samples have been used to determine the composition in fatty acids, and the content in the main minority compounds: polyphenols, tocopherols, carotenoid pigments and chlorophylls. It has been observed that, among the compounds analyzed, Polyphenols due to their high antioxidant activity are the components that have the most important influence on the oxidative stability of oils of the variety 'Picual'. Among the multivariate analysis methods evaluated, it is the PLS that allows to obtain a more robust oxidative stability prediction model with fewer variables. Having a prediction model from the composition of the oil would allow to predict oxidative stability immediately.