Anotación de acordes en piezas musicales con aprendizaje profundo
Archivos
Fecha
2021-06-28
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
Este trabajo de fin de grado trata de buscar un método para extraer acordes de piezas musicales de manera automática. La
extracción de dichos acordes ha sido siempre un trabajo manual, que necesita un conocimiento previo sobre armonía
musical. En este trabajo, se pretende realizar esta extracción, en primer lugar, con modelos de aprendizaje automático
más básicos como Random Forest, kNN o regresión logística y, posteriormente, con técnicas de aprendizaje profundo
como el perceptrón multicapa o redes neuronales convolucionales. El trabajo realizado ha llevado al diseño de un modelo
de red neuronal convolucional que trabaja con una representación del audio conocida como mel-filterbank. Este modelo
es capaz de extraer 42 tipos de acordes distintos de una pieza musical con un 80 % de exactitud.
This final degree work tries to find a method to extract chords from musical pieces in an automatic way. The extraction of such chords has always been a manual work, which needs a previous knowledge about musical harmony. In this work, the aim is to perform this extraction, firstly, with more basic machine learning models such as Random Forest, kNN or logistic regression and, subsequently, with deep learning techniques such as multilayer perceptron or convolutional neural networks. The work that has been carried out has led to the design of a convolutional neural network model that works with a representation of audio known as mel-filterbank. This model can extract 42 different chord types from a piece of music with 80 % accuracy.
This final degree work tries to find a method to extract chords from musical pieces in an automatic way. The extraction of such chords has always been a manual work, which needs a previous knowledge about musical harmony. In this work, the aim is to perform this extraction, firstly, with more basic machine learning models such as Random Forest, kNN or logistic regression and, subsequently, with deep learning techniques such as multilayer perceptron or convolutional neural networks. The work that has been carried out has led to the design of a convolutional neural network model that works with a representation of audio known as mel-filterbank. This model can extract 42 different chord types from a piece of music with 80 % accuracy.