La geometría del plano hiperbólico
Fecha
2024-05-15
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
Este trabajo está dedicado al estudio del plano hiperbólico H a través del modelo del semiplano superior de Poincaré. Sentaremos las bases de la geometría hiperbólica empezando por la definición de líneas hiperbólicas, y estudiando sus propiedades de paralelismo. Recopilaremos algunos resultados de las transformaciones de Möbius, para establecer las isometrías de H y estudiar algunas de sus propiedades de transitividad. Deduciremos como medir la longitud hiperbólica de un camino y la distancia hiperbólica, dotando así a H de la estructura de espacio métrico. Estudiaremos los polígonos hiperbólicos y el área hiperbólica y finalizaremos dando una versión hiperbólica del teorema de Gauss-Bonnet. Aplicaremos estos resultados para estudiar teselaciones hiperbólicas regulares.
This work is dedicated to the study of the hyperbolic plane H through the model of Poincaré’s upper half-plane model. We will lay the foundations of hyperbolic geometry starting with the definition of hyperbolic lines, and studying their properties of parallelism. Some results of the Möbius transformations will be collected to establish the isometries of H and study some of its transitivity properties. We will deduce how to measure the hyperbolic length of a path and the hyperbolic distance, thus giving H the structure of metric space. We will study hyperbolic polygons and hyperbolic area and finish by giving a hyperbolic version of the Gauss-Bonnet theorem. We will apply these results to study regular hyperbolic tessellations.
This work is dedicated to the study of the hyperbolic plane H through the model of Poincaré’s upper half-plane model. We will lay the foundations of hyperbolic geometry starting with the definition of hyperbolic lines, and studying their properties of parallelism. Some results of the Möbius transformations will be collected to establish the isometries of H and study some of its transitivity properties. We will deduce how to measure the hyperbolic length of a path and the hyperbolic distance, thus giving H the structure of metric space. We will study hyperbolic polygons and hyperbolic area and finish by giving a hyperbolic version of the Gauss-Bonnet theorem. We will apply these results to study regular hyperbolic tessellations.
Descripción
Palabras clave
Matemáticas