Síntesis y caracterización de receptores iónicos de 5-nitrosopirimidinas y bis(2-aminoetil)amina.
Archivos
NO SE HA AUTORIZADO la consulta de los documentos asociados
Fecha
2016-07-18
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
[ES]En este TFG se ha llevado a cabo la síntesis y la caracterización tanto química como
estructural de moléculas orgánicas con el objetivo de funcionalizar con ellas
superficies grafénicas. Se trataría de una funcionalización no covalente basada en la
interacción π-π entre centros arénicos de la superficie grafénica y la base aromática
de las moléculas sintetizadas, cuya función es la de anclaje a dicha superficie.
Con esta finalidad, hemos pensado en la síntesis de un compuesto con un núcleo
central heteroaromático derivado de 2-amino-5-nitrosopirimidina, cuyas posiciones
C(4) y C(6) estén ocupadas por dos residuos de tris(2-etilamino)amina (TREN), de
forma que la estructura final del compuesto presente las características
fundamentales de otros derivados similares utilizados anteriormente en la
funcionalización no covalente de superficies grafénicas. Es decir, una unidad de
anclaje no-covalente a superficies grafénicas al que se van a unir dos cadenas de
las que penden dos unidades funcionales de dietilentriamina, escogido por las
buenas propiedades complejantes hacia algunos metales, como Pd y Pt.
La estrategia de síntesis va a consistir en la conexión de dos fragmentos de TREN
sobre el esqueleto de 2-amino-5-nitrosopirimidina por sustitución de grupos metoxilo
con aminas primarias sobre el compuesto 2-amino-4,6-dimetoxi-5-nitrosopirimidina.
Para lograr una monosustitución selectiva del TREN, se va a proteger una de sus
aminas primarias con tritilo y las otras dos con tert-butoxicarbonilo (Boc).
Posteriormente, se va a eliminar el tritilo obteniendo TREN-diBoc. De esta forma
obtendremos una amina libre capaz de unirse a la base de la pirimidina.
El compuesto finalmente obtenido en este TFG presenta dos funciones receptoras
de iones (en lugar de una sola como tenían otras moléculas previamente trabajadas
en este grupo de investigación) lo que permitirá obtener superficies grafénicas
funcionalizadas con una mayor densidad de funciones receptoras disponibles en su
superficie.
[EN]The aim of this work is the synthesis and structural and chemical characterization of organic molecules for the functionalization of grapheme surfaces through noncovalent functionalization. This is based on the π-π interaction between arene centers of the graphene surfaces and aromatics rings of synthesized molecules, whose function is to act as the anchor that attach these organic molecules onto the graphene surface. For this purpose, we have thought in the synthesis of a compound with a heteroaromatic core derived from the structure of 2-amino-5-nitrosopyrimidine, whose C(4) and C(6) positions are occupied by two residues of tris(2- ethylamino)amine (TREN). In that way the final structure of the compound would possess the fundamental characteristics of other derivatives previously used in the non-covalent functionalization of graphene surfaces. That is, an electron–deficient heteroaromatic moiety, devoted to the non-covalent anchorage to graphene surfaces, with two functional units of diethylenetriamine pending from the heteroaromatic nucleus. This particular structure of the functional units was chosen owing to its good complex properties towards some metals such as Pd and Pt. The synthetic strategy has consisted in connecting two fragments of TREN on the structure of 2-amino-5-nitrosopyrimidine by substitution of the methoxyl groups of 2- amino-4,6-dimethoxy-5-nitrosopyrimidine by primary amines of the TREN moieties. To obtain a selective reaction of TREN through only one of its terminal amino groups, it is necessary to prepare a TREN derivative with two of its primary amino groups conveniently protected while keeping another free. Such TREN derivative was achieved by protecting one of its primary amines with a trityl group and the other two with tert-butoxycarbonyl (Boc) groups. The subsequent selective removal of the trityl group afforded TREN-diBoc. In this way we obtain a free amine able to bind to the pyrimidine base. The compound finally obtained in this work has two functions capable of complexing metal ions (instead of one as had other molecules previously worked in this research group) which allows to obtain functionalized graphene surfaces with a higher density of receptor functions available on its surface.
[EN]The aim of this work is the synthesis and structural and chemical characterization of organic molecules for the functionalization of grapheme surfaces through noncovalent functionalization. This is based on the π-π interaction between arene centers of the graphene surfaces and aromatics rings of synthesized molecules, whose function is to act as the anchor that attach these organic molecules onto the graphene surface. For this purpose, we have thought in the synthesis of a compound with a heteroaromatic core derived from the structure of 2-amino-5-nitrosopyrimidine, whose C(4) and C(6) positions are occupied by two residues of tris(2- ethylamino)amine (TREN). In that way the final structure of the compound would possess the fundamental characteristics of other derivatives previously used in the non-covalent functionalization of graphene surfaces. That is, an electron–deficient heteroaromatic moiety, devoted to the non-covalent anchorage to graphene surfaces, with two functional units of diethylenetriamine pending from the heteroaromatic nucleus. This particular structure of the functional units was chosen owing to its good complex properties towards some metals such as Pd and Pt. The synthetic strategy has consisted in connecting two fragments of TREN on the structure of 2-amino-5-nitrosopyrimidine by substitution of the methoxyl groups of 2- amino-4,6-dimethoxy-5-nitrosopyrimidine by primary amines of the TREN moieties. To obtain a selective reaction of TREN through only one of its terminal amino groups, it is necessary to prepare a TREN derivative with two of its primary amino groups conveniently protected while keeping another free. Such TREN derivative was achieved by protecting one of its primary amines with a trityl group and the other two with tert-butoxycarbonyl (Boc) groups. The subsequent selective removal of the trityl group afforded TREN-diBoc. In this way we obtain a free amine able to bind to the pyrimidine base. The compound finally obtained in this work has two functions capable of complexing metal ions (instead of one as had other molecules previously worked in this research group) which allows to obtain functionalized graphene surfaces with a higher density of receptor functions available on its surface.