Ensembles dinámicos de modelos machine learning para regresión.
Fecha
2022-07-15
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Jaén: Universidad de Jaén
Resumen
Son muchas las aplicaciones reales que necesitan utilizar sistemas inteligentes para la extracción de conocimiento a partir de los datos que generan.
Dentro del campo de la minería de datos, presentan buenos resultados las técnicas de machine learning formadas por combinación de modelos. Estas
técnicas, denominadas ensembles, mejoran el rendimiento de los modelos básicos que lo forman. Las últimas investigaciones se centran en el
desarrollo de ensembles dinámicos frente a los estáticos que se venían desarrollando. En los ensembles dinámicos se selecciona, entre los modelos
base disponibles, un subconjunto de ellos para obtener el modelo final. A pesar de que la regresión es una de las tareas importantes en minería dados,
la mayoría de desarrollos en este campo se centran en las tareas de clasificación.
El objevo en este trabajo es el estudio y desarrollo de métodos basados en ensembles dinámicos que se pueda aplicar a problemas de regresión. Con
la realización de este trabajo se pretende un acercamiento a un campo novedoso, en el que se desarrollan modelos de data science, en particular
métodos de machine learning basados en tecnologías de ensembles dinámicos, para su aplicación en problemas de regresión.
There are many real applications that need to use intelligent systems to extract knowledge from the data they generate. Within the field of data mining, machine learning techniques formed by combining models show good results. These techniques, called ensembles, improve the performance of the basic models that compose them. The latest research focuses on the development of dynamic ensembles as opposed to the static ensembles that have been developed in the past. In dynamic ensembles, a subset of the available base models is selected to obtain the final model. Although regression is one of the important tasks in data mining, most developments in this field focus on classification tasks. The aim of this work is to study and develop methods based on dynamic ensembles that can be applied to regression problems. The aim of this work is to approach a novel field, in which data science models, in particular machine learning methods based on dynamic ensemble technologies, are developed for application to regression problems.
There are many real applications that need to use intelligent systems to extract knowledge from the data they generate. Within the field of data mining, machine learning techniques formed by combining models show good results. These techniques, called ensembles, improve the performance of the basic models that compose them. The latest research focuses on the development of dynamic ensembles as opposed to the static ensembles that have been developed in the past. In dynamic ensembles, a subset of the available base models is selected to obtain the final model. Although regression is one of the important tasks in data mining, most developments in this field focus on classification tasks. The aim of this work is to study and develop methods based on dynamic ensembles that can be applied to regression problems. The aim of this work is to approach a novel field, in which data science models, in particular machine learning methods based on dynamic ensemble technologies, are developed for application to regression problems.
Descripción
Palabras clave
Especialidad: Sistemas de Información. Mención: Tratamiento Inteligente de Información.