Charte Ojeda, FranciscoRivera Rivas, Antonio JesúsCartas Rascón, Jesús EnriqueUniversidad de Jaén. Informática2022-12-212022-12-212020-06-06https://hdl.handle.net/10953.1/19127Las cámaras de fototrampeo son muy úEles para los biólogos profesionales ya que proveen una manera fácil y discreta de monitorizar diferentes Epos de animales en un determinado lugar. Sin embargo, estos disposiEvos no son perfectos y algunas veces fallan. De hecho, fallan muchas veces. Se propone un sistema basado en aprendizaje profundo y visión arEficial que es capaz de analizar todo el conjunto de imágenes y, con un 90% de precisión, extraer las imágenes úEles automáEcamente. Consideramos como imágenes úEles aquellas que conEenen un animal, mientras que las que no tengan ninguno son catalogadas como inúEles.Camera trap images can be very useful to biology related professionals since they provide an easy and unobtrusive way to keep track of different animals in a particular area. However, these devices are not perfect and can sometimes miss their shot. In fact, they miss a lot. We propose a deep learning and computer vision system that can analyze the whole image dataset and extract, with 90% accuracy, the useful images automatically. Useful images are those ones that contain some type of animal, whereas those with no animals in them are tagged as useless.spainfo:eu-repo/semantics/openAccessEspecialidad en Tratamiento de la Información1203.171203.043304InformáticaInformaticsInteligencia artificialArtificial IntelligenceTecnología de los OrdenadoresComputer TechnologyDetección e identificación de presencia de animales en imágenes de fototrampeoinfo:eu-repo/semantics/bachelorThesis