Enseñanza y aprendizaje de conocimientos lógico-matemáticos en Educación Infantil
Archivos
NO SE HA AUTORIZADO la consulta de los documentos asociados
Fecha
2022-03-25
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
Mediante este Trabajo Fin de Grado, se pretende analizar la Teoría de Situaciones Didácticas, de Guy Brousseau, una obra que recoge cómo el alumnado construye conocimientos matemáticos, y el papel del profesorado en la enseñanza de los mismos.
Además, en el marco teórico se incluye el Aprendizaje Basado en Proyectos, con la intención de establecer relaciones funcionales entre esta metodología y la Teoría de Brousseau que permitan comprender de qué manera y con qué beneficios, a través de un proyecto, el alumnado puede construir conocimientos matemáticos con sentido y funcionalidad.
Por ello, una vez analizado el marco teórico de ambos, se ha llevado a la práctica lo aprendido a través del esbozo de un proyecto en el que se desarrollan tres situaciones a-didácticas en torno a conocimientos numéricos, lógicos y espaciales.
Through this Final Degree Paper, it is intented to analyze the Theory of Didactic Situations, by Guy Brousseau, a work that gathers how students build mathematical knowledge, and the role of theacher in the teaching of these. In addition, the theoretical framework includes Project-Based Learning, with the intention of establishing functional relations between this methodology and Brousseau´s Theory that allow to understand in what way and with what benefits, through a project, students can build mathematical knowledge with meaning and functionality. Therefore, once the theoretical framework of both has been analyzed, what has been learned has been put into practice through the outline of a project in which three didactic situations are developed around knowledge.
Through this Final Degree Paper, it is intented to analyze the Theory of Didactic Situations, by Guy Brousseau, a work that gathers how students build mathematical knowledge, and the role of theacher in the teaching of these. In addition, the theoretical framework includes Project-Based Learning, with the intention of establishing functional relations between this methodology and Brousseau´s Theory that allow to understand in what way and with what benefits, through a project, students can build mathematical knowledge with meaning and functionality. Therefore, once the theoretical framework of both has been analyzed, what has been learned has been put into practice through the outline of a project in which three didactic situations are developed around knowledge.